If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=320x-1538
We move all terms to the left:
16x^2-(320x-1538)=0
We get rid of parentheses
16x^2-320x+1538=0
a = 16; b = -320; c = +1538;
Δ = b2-4ac
Δ = -3202-4·16·1538
Δ = 3968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3968}=\sqrt{64*62}=\sqrt{64}*\sqrt{62}=8\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-8\sqrt{62}}{2*16}=\frac{320-8\sqrt{62}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+8\sqrt{62}}{2*16}=\frac{320+8\sqrt{62}}{32} $
| -22-6=x | | 2+(1/3t)=1+(1/4t) | | 2+(1/3t)= | | -1/5y-3/5=2/3y-10/3 | | 5+1x10=15 | | -1/5(y+3)=2/3(y-5) | | 7=1/7x | | 180=2x+(3x+10) | | y/3+2=11 | | 15/7/(1.5a)=5/14/0.8 | | 3x^2+25=4x62 | | 21/7/(1.5a)=5/14/0.8 | | 5=4/g | | 5=g/4 | | 0=7+2(5x-4) | | -5(x+4)+7=-3 | | 8=8(v-1) | | (6x-9)=(5x+10) | | 1/5x+1+5.25=3/2x+7/10x+1.54 | | (14x-6)=20 | | 41=9-4w | | 0.02q+0.85=0.95 | | 39s-s=-80 | | 8n^2+112=-72n | | 5f=5500 | | -1/4(p+16)=3 | | –3x2=–27 | | x+(x-25)+3(x-25)=$275 | | 4xx8x=32x | | (10x-5)+(8x+13)=170 | | -3/10x+2x=-21-1/10 | | 2/3(2x+1)=1/6x |